organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,1'-Ureylenedi-7,7-dimethylbicyclo[2.2.1]heptan-2-one

Yu-Xing Gao, Peng Liu, Yi-Xin Fang, Guo Tang* and Yu-Fen Zhao

Department of Chemistry, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China Correspondence e-mail: t12g21@xmu.edu.cn

Received 21 August 2007; accepted 31 August 2007

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.115; data-to-parameter ratio = 10.7.

The title compound, $C_{19}H_{28}N_2O_3$, was obtained by the acidic hydrolysis of (1S,4R)-1-isocyanato-7,7-dimethylbicyclo[2.2.1]-heptan-2-one followed by addition of aqueous sodium hydroxide. $N-H\cdots O$ hydrogen bonds link the molecules into chains running along the *a* axis.

Related literature

For related literature, see: Braslau et al. (1996); Gao et al. (2006).

Experimental

Crystal data

$C_{19}H_{28}N_2O_3$	a = 6.7578 (16) Å
$M_r = 332.43$	b = 12.107 (3) Å
Orthorhombic, $P2_12_12_1$	c = 21.269 (5) Å

 $V = 1740.2 (7) \text{ Å}^{3}$ Z = 4Mo *K*\alpha radiation

Data collection

Bruker APEX area-detector	10699 measured reflections
diffractometer	2418 independent reflections
Absorption correction: multi-scan	2280 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.022$
$T_{\min} = 0.958, \ T_{\max} = 0.990$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.115$ S = 1.112418 reflections 225 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N1 - H1 \cdots O3^{i} \\ N2 - H2 \cdots O3^{i} \end{array}$	0.82 (3) 0.83 (2)	2.34 (2) 2.32 (2)	3.090 (2) 3.061 (2)	153 (2) 148 (2)
	1 . 1			

 $\mu = 0.09 \text{ mm}^{-1}$

T = 223 (2) K

refinement

 $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.50 \times 0.16 \times 0.12 \text{ mm}$

H atoms treated by a mixture of

independent and constrained

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Key Project of the Chinese Ministry of Education (grant No. 104201) for supporting this work. We also thank Mr R.-B. Huang for technical assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2449).

References

Braslau, R., Kuhn, H., Burrill, L. C., Lanham, K. & Stenland, C. J. (1996). *Tetrahedron Lett.* **37**, 7933–7936.

Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gao, Y.-X., Tang, G. & Zhao, Y.-F. (2006). Acta Cryst. E62, 04521-04522.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3994 [doi:10.1107/S1600536807042754]

1,1'-Ureylenedi-7,7-dimethylbicyclo[2.2.1]heptan-2-one

Y.-X. Gao, P. Liu, Y.-X. Fang, G. Tang and Y.-F. Zhao

Comment

The title compound, (I), is a byproduct in the synthesis of (1S,4R)-1-amino-7,7-dimethylbicyclo[2.2.1]heptan-2-one, which is used in the synthesis of several optically active nitroxyl radicals as a key synthetic intermediate (Braslau *et al.*, 1996). The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in the camphor moiety are in agreement with the values reported for a related compound (Gao *et al.*, 2006). Both N—H groups are involved in hydrogen-bonding interactions with the carbonyl O atom of a neighboring molecule (Table 1). Molecules are linked into chains, running along the *a* axis, by N—H…O intermolecular hydrogen bonds.

Experimental

To a solution of (1S,4R)-1-isocyanato-7,7-dimethylbicyclo[2.2.1]heptan-2-one (0.9 g, 5 mmol) in tetrahydrofuran (10 ml) was added a 1 N aqueous HCl solution (15 ml), and the mixture was stirred at reflux for 1 h. 2 N aqueous sodium hydroxide (10 ml) was then added at room temperature and stirred for 30 min. Then the solution was extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous MgSO₄, concentrated under vacuum and the crude product was purified by column chromatography (petroleum ether-ethyl acetate, 6:1) to give the title compound as a white solid (0.06 g). Single crystals of (I) were obtained by slow evaporation of a petroleum ether-ethyl acetate solution (6:1 v/v).

Refinement

N-bound H atoms were located in a difference map and refined isotropically. Methyl H atoms were placed in calculated positions, with C—H = 0.97 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were placed in idealized positions [C—H = 0.98 Å (methine) and 0.97 Å (methylene)] and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration of (I) was assigned assuming that the absolute configuration of the starting material was retained during the synthesis.

Figures

Fig. 1. The molecular structure of (I), shown with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).

1,1'-Ureylenedi-7,7-dimethylbicyclo[2.2.1]heptan-2-one

Crystal data C₁₉H₂₈N₂O₃

 $F_{000} = 720$

$M_r = 332.43$
Orthorhombic, <i>P</i> 2 ₁ 2 ₁ 2 ₁
Hall symbol: P 2ac 2ab
a = 6.7578 (16) Å
b = 12.107 (3) Å
c = 21.269 (5) Å
V = 1740.2 (7) Å ³
Z = 4

Data collection

Bruker APEX area-detector diffractometer	2418 independent reflections
Radiation source: fine-focus sealed tube	2280 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 223(2) K	$\theta_{\text{max}} = 28.5^{\circ}$
φ and ω scan	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -8 \rightarrow 9$
$T_{\min} = 0.958, \ T_{\max} = 0.990$	$k = -16 \rightarrow 13$
10699 measured reflections	$l = -27 \rightarrow 27$

 $D_{\rm x} = 1.269 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.6-28.3^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 223 (2) KNeedle, colourless $0.50 \times 0.16 \times 0.12 \text{ mm}$

Cell parameters from 5524 reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0653P)^2 + 0.3373P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.045$	$(\Delta/\sigma)_{\text{max}} = 0.001$
$wR(F^2) = 0.115$	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.11	$\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$
2418 reflections	Extinction correction: none
225 parameters	
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.0794 (2)	-0.00170 (12)	0.15120 (6)	0.0362 (4)
O2	-0.3852 (3)	0.30420 (16)	0.17297 (8)	0.0575 (6)
O3	0.2716 (3)	0.22757 (12)	-0.02375 (7)	0.0389 (4)
N1	-0.1005 (3)	0.15462 (15)	0.14606 (7)	0.0303 (4)
N2	0.0777 (3)	0.09851 (14)	0.06177 (7)	0.0265 (3)
C1	-0.1793 (3)	0.15398 (16)	0.20795 (8)	0.0259 (4)
C2	-0.3036 (3)	0.05390 (18)	0.22789 (9)	0.0326 (4)
H2A	-0.4341	0.0552	0.2078	0.039*
H2B	-0.2369	-0.0154	0.2171	0.039*
C3	-0.3212 (4)	0.0676 (2)	0.29920 (9)	0.0411 (5)
H3A	-0.4602	0.0699	0.3124	0.049*
H3B	-0.2542	0.0073	0.3214	0.049*
C4	-0.2196 (4)	0.1770 (2)	0.31125 (9)	0.0379 (5)
H4A	-0.1817	0.1891	0.3557	0.045*
C5	-0.3502 (4)	0.2668 (2)	0.28422 (11)	0.0490 (7)
H5A	-0.4892	0.2558	0.2958	0.059*
H5B	-0.3074	0.3402	0.2979	0.059*
C6	-0.3187 (4)	0.25094 (19)	0.21497 (10)	0.0380 (5)
C7	-0.0432 (3)	0.17393 (16)	0.26539 (9)	0.0296 (4)
C8	0.1014 (3)	0.08364 (18)	0.28097 (10)	0.0349 (5)
H8A	0.1785	0.1049	0.3175	0.052*
H8B	0.1891	0.0718	0.2455	0.052*
H8C	0.0298	0.0160	0.2900	0.052*
C9	0.0710 (4)	0.2801 (2)	0.26036 (14)	0.0504 (6)
H9A	0.1540	0.2889	0.2972	0.076*
H9B	-0.0206	0.3416	0.2576	0.076*
H9C	0.1532	0.2784	0.2230	0.076*
C10	0.2530 (3)	0.05642 (15)	0.03347 (7)	0.0227 (4)
C11	0.3229 (3)	0.13360 (16)	-0.01740 (9)	0.0292 (4)
C12	0.4655 (4)	0.07015 (19)	-0.05723 (10)	0.0390 (5)
H12A	0.5976	0.1036	-0.0565	0.047*
H12B	0.4197	0.0649	-0.1008	0.047*
C13	0.4647 (3)	-0.04173 (19)	-0.02532 (10)	0.0351 (5)
H13A	0.5125	-0.1033	-0.0519	0.042*
C14	0.5779 (4)	-0.0266 (2)	0.03588 (11)	0.0457 (6)
H14A	0.7046	0.0107	0.0287	0.055*
H14B	0.6024	-0.0978	0.0564	0.055*
C15	0.4387 (3)	0.0450 (2)	0.07487 (9)	0.0341 (5)
H15A	0.4978	0.1174	0.0834	0.041*
H15B	0.4067	0.0092	0.1149	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

C16	0.2486 (3)	-0.05347 (16)	-0.00295 (8)	0.0279 (4)
C17	0.0970 (4)	-0.0538 (2)	-0.05517 (10)	0.0407 (5)
H17A	-0.0344	-0.0616	-0.0373	0.061*
H17B	0.1231	-0.1150	-0.0834	0.061*
H17C	0.1049	0.0151	-0.0783	0.061*
C18	0.2141 (4)	-0.15394 (18)	0.03774 (11)	0.0422 (5)
H18A	0.0760	-0.1569	0.0501	0.063*
H18B	0.2966	-0.1494	0.0750	0.063*
H18C	0.2474	-0.2200	0.0142	0.063*
C19	0.0236 (3)	0.07774 (15)	0.12232 (8)	0.0252 (4)
H1	-0.146 (4)	0.202 (2)	0.1226 (11)	0.027 (6)*
H2	0.038 (3)	0.1590 (19)	0.0484 (10)	0.023 (5)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0492 (9)	0.0318 (7)	0.0276 (6)	0.0136 (7)	0.0129 (7)	0.0098 (6)
02	0.0700 (13)	0.0620 (11)	0.0403 (8)	0.0400 (10)	-0.0001 (9)	0.0061 (8)
03	0.0514 (10)	0.0307 (7)	0.0345 (7)	-0.0025 (7)	0.0111 (7)	0.0075 (6)
N1	0.0371 (9)	0.0327 (8)	0.0211 (7)	0.0111 (8)	0.0058 (7)	0.0083 (6)
N2	0.0298 (8)	0.0286 (8)	0.0210 (7)	0.0054 (7)	0.0048 (6)	0.0060 (6)
C1	0.0281 (9)	0.0299 (9)	0.0198 (8)	0.0049 (8)	0.0015 (7)	0.0000 (7)
C2	0.0309 (10)	0.0426 (11)	0.0244 (8)	-0.0071 (9)	0.0005 (8)	0.0015 (8)
C3	0.0352 (11)	0.0636 (15)	0.0244 (9)	-0.0032 (11)	0.0058 (8)	0.0047 (10)
C4	0.0386 (12)	0.0514 (13)	0.0236 (9)	0.0113 (11)	0.0003 (8)	-0.0084 (8)
C5	0.0487 (14)	0.0646 (16)	0.0338 (11)	0.0264 (13)	0.0004 (10)	-0.0122 (11)
C6	0.0371 (11)	0.0437 (12)	0.0331 (10)	0.0151 (10)	0.0017 (9)	-0.0020 (9)
C7	0.0290 (9)	0.0309 (9)	0.0289 (8)	0.0028 (8)	-0.0023 (8)	-0.0048 (7)
C8	0.0326 (10)	0.0398 (11)	0.0323 (10)	0.0059 (9)	-0.0071 (8)	-0.0014 (8)
C9	0.0512 (15)	0.0341 (11)	0.0660 (15)	-0.0066 (11)	-0.0081 (14)	-0.0043 (11)
C10	0.0251 (9)	0.0254 (8)	0.0176 (7)	-0.0009 (7)	0.0022 (6)	0.0000 (7)
C11	0.0315 (10)	0.0334 (10)	0.0225 (8)	-0.0056 (8)	0.0039 (8)	0.0006 (7)
C12	0.0418 (12)	0.0433 (12)	0.0319 (10)	-0.0048 (10)	0.0153 (9)	-0.0026 (9)
C13	0.0353 (11)	0.0379 (11)	0.0320 (9)	0.0035 (9)	0.0088 (9)	-0.0055 (9)
C14	0.0308 (12)	0.0624 (15)	0.0440 (12)	0.0094 (11)	-0.0011 (10)	-0.0046 (11)
C15	0.0281 (10)	0.0473 (12)	0.0268 (9)	-0.0006 (9)	-0.0044 (8)	-0.0037 (9)
C16	0.0332 (10)	0.0279 (9)	0.0226 (8)	-0.0012 (8)	0.0052 (8)	-0.0039 (7)
C17	0.0430 (12)	0.0502 (13)	0.0288 (10)	-0.0092 (11)	-0.0021 (9)	-0.0085 (9)
C18	0.0580 (15)	0.0269 (10)	0.0417 (11)	0.0003 (10)	0.0093 (11)	-0.0006 (9)
C19	0.0289 (9)	0.0272 (9)	0.0196 (7)	-0.0001 (8)	0.0036 (7)	0.0006 (6)

Geometric parameters	(Å,	%
----------------------	-----	---

O1—C19	1.202 (2)	C8—H8C	0.97
O2—C6	1.190 (3)	С9—Н9А	0.97
O3—C11	1.197 (3)	С9—Н9В	0.97
N1—C19	1.351 (2)	С9—Н9С	0.97
N1—C1	1.420 (2)	C10—C11	1.506 (3)
N1—H1	0.82 (3)	C10—C15	1.539 (3)

N2—C19	1.362 (2)	C10—C16	1.540 (2)
N2—C10	1.423 (2)	C11—C12	1.495 (3)
N2—H2	0.83 (2)	C12—C13	1.515 (3)
C1—C6	1.513 (3)	C12—H12A	0.98
C1—C2	1.534 (3)	C12—H12B	0.98
C1—C7	1.548 (3)	C13—C14	1.521 (3)
С2—С3	1.530 (3)	C13—C16	1.543 (3)
C2—H2A	0.98	C13—H13A	0.99
C2—H2B	0.98	C14—C15	1.525 (3)
С3—С4	1.514 (3)	C14—H14A	0.98
С3—НЗА	0.98	C14—H14B	0.98
С3—Н3В	0.98	C15—H15A	0.98
C4—C5	1.513 (3)	C15—H15B	0.98
C4—C7	1.541 (3)	C16—C17	1.511 (3)
C4—H4A	0.99	C16—C18	1.511 (3)
C5—C6	1.500 (3)	C17—H17A	0.97
С5—Н5А	0.98	C17—H17B	0.97
C5—H5B	0.98	C17—H17C	0.97
C7—C8	1 503 (3)	C18—H18A	0.97
C7—C9	1.504 (3)	C18—H18B	0.97
C8—H8A	0.97	C18—H18C	0.97
C8—H8B	0.97		0,
C_{10} N1 C_{1}	125 14 (16)		100.5
C19 N1 U1	123.14(10)	$\frac{19}{19} = \frac{19}{19} = \frac{19}{19}$	109.5
	119.3 (10)	N2	110.05(10)
CI = NI = HI	115.1(10)	N2	117.95 (14)
C19 - N2 - C10	123.87(10)	C11 = C10 = C15	102.19 (16)
C19—N2—H2	113.0 (15)	$N_2 = C_{10} = C_{16}$	120.39 (16)
CIO-N2-H2	100.71 (10)		100.42(14)
NI = CI = C6	108.71 (16)		103.08 (15)
NI = CI = C2	11/.//(16)	03 - C11 - C12	127.66 (19)
$C_0 = C_1 = C_2$	104.15 (17)		125.45 (19)
NI = CI = C/	120.53(18)		106.89 (17)
	99.85 (15)		101./1 (16)
$C_2 = C_1 = C_1$	103.32 (15)	C11—C12—H12A	111.4
$C_3 = C_2 = C_1$	103.36 (17)	C13—C12—H12A	111.4
$C_3 = C_2 = H_2 A$	111.1	C11—C12—H12B	111.4
CI = C2 = H2A	111.1	CI3—CI2—HI2B	111.4
C3—C2—H2B	111.1	HI2A—CI2—HI2B	109.3
CI—C2—H2B	111.1	C12—C13—C14	105.91 (19)
H2A—C2—H2B	109.1	C12—C13—C16	102.95 (18)
C4—C3—C2	103.12 (18)	C14—C13—C16	102.90 (17)
С4—С3—НЗА	111.1	С12—С13—Н13А	114.6
С2—С3—НЗА	111.1	C14—C13—H13A	114.6
C4—C3—H3B	111.1	C16—C13—H13A	114.6
C2—C3—H3B	111.1	C13—C14—C15	102.93 (18)
H3A—C3—H3B	109.1	C13—C14—H14A	111.2
C5—C4—C3	107.4 (2)	C15—C14—H14A	111.2
C5—C4—C7	103.20 (18)	C13—C14—H14B	111.2
C3—C4—C7	102.86 (16)	C15-C14-H14B	111.2

supplementary materials

С5—С4—Н4А	114.1	H14A—C14—H14B	109.1
C3—C4—H4A	114.1	C14—C15—C10	104.04 (16)
С7—С4—Н4А	114.1	C14—C15—H15A	110.9
C6—C5—C4	101.45 (18)	C10-C15-H15A	110.9
С6—С5—Н5А	111.5	C14—C15—H15B	110.9
C4—C5—H5A	111.5	C10-C15-H15B	110.9
С6—С5—Н5В	111.5	H15A—C15—H15B	109.0
C4—C5—H5B	111.5	C17—C16—C18	108.32 (18)
H5A—C5—H5B	109.3	C17—C16—C10	112.65 (17)
O2—C6—C5	127.9 (2)	C18—C16—C10	114.24 (15)
O2—C6—C1	125.57 (19)	C17—C16—C13	114.54 (16)
C5—C6—C1	106.52 (18)	C18—C16—C13	113.39 (19)
C8—C7—C9	107.70 (19)	C10-C16-C13	93.27 (15)
C8—C7—C4	112.41 (17)	С16—С17—Н17А	109.5
C9—C7—C4	114.92 (19)	C16—C17—H17B	109.5
C8—C7—C1	116.53 (16)	H17A—C17—H17B	109.5
С9—С7—С1	112.47 (18)	С16—С17—Н17С	109.5
C4—C7—C1	92.50 (16)	H17A—C17—H17C	109.5
С7—С8—Н8А	109.5	H17B—C17—H17C	109.5
С7—С8—Н8В	109.5	C16-C18-H18A	109.5
H8A—C8—H8B	109.5	C16-C18-H18B	109.5
С7—С8—Н8С	109.5	H18A—C18—H18B	109.5
H8A—C8—H8C	109.5	C16—C18—H18C	109.5
H8B—C8—H8C	109.5	H18A—C18—H18C	109.5
С7—С9—Н9А	109.5	H18B—C18—H18C	109.5
С7—С9—Н9В	109.5	O1-C19-N1	123.73 (17)
Н9А—С9—Н9В	109.5	O1—C19—N2	123.13 (18)
С7—С9—Н9С	109.5	N1-C19-N2	113.13 (17)
Н9А—С9—Н9С	109.5		
C19—N1—C1—C6	-177.4 (2)	C19—N2—C10—C16	92.3 (2)
C19—N1—C1—C2	-59.3 (3)	N2-C10-C11-O3	16.8 (3)
C19—N1—C1—C7	68.4 (3)	C15-C10-C11-O3	-109.3 (2)
N1—C1—C2—C3	167.25 (19)	C16—C10—C11—O3	144.7 (2)
C6—C1—C2—C3	-72.3 (2)	N2-C10-C11-C12	-163.16 (16)
C7—C1—C2—C3	31.6 (2)	C15-C10-C11-C12	70.73 (19)
C1—C2—C3—C4	4.1 (2)	C16-C10-C11-C12	-35.2 (2)
C2—C3—C4—C5	69.8 (2)	O3-C11-C12-C13	-179.5 (2)
C2—C3—C4—C7	-38.7 (2)	C10-C11-C12-C13	0.4 (2)
C3—C4—C5—C6	-73.0 (2)	C11—C12—C13—C14	-72.8 (2)
C7—C4—C5—C6	35.2 (3)	C11—C12—C13—C16	34.9 (2)
C4—C5—C6—O2	-177.4 (3)	C12-C13-C14-C15	69.8 (2)
C4—C5—C6—C1	1.2 (3)	C16-C13-C14-C15	-37.9 (2)
N1—C1—C6—O2	15.0 (3)	C13—C14—C15—C10	4.0 (2)
C2-C1-C6-O2	-111.3 (3)	N2-C10-C15-C14	166.56 (18)
C7—C1—C6—O2	142.1 (3)	C11—C10—C15—C14	-72.7 (2)
N1—C1—C6—C5	-163.6 (2)	C16—C10—C15—C14	31.2 (2)
C2-C1-C6-C5	70.0 (2)	N2-C10-C16-C17	55.8 (2)
C7—C1—C6—C5	-36.5 (2)	C11—C10—C16—C17	-65.0 (2)
C5—C4—C7—C8	-176.07 (19)	C15-C10-C16-C17	-170.25 (17)

C3—C4—C7—C8	-64.4 (2)	N2-C10-C16-C18	-68.4 (2)
С5—С4—С7—С9	60.3 (2)	C11-C10-C16-C18	170.8 (2)
С3—С4—С7—С9	171.92 (19)	C15-C10-C16-C18	65.6 (2)
C5—C4—C7—C1	-55.97 (19)	N2-C10-C16-C13	174.14 (16)
C3—C4—C7—C1	55.68 (18)	C11-C10-C16-C13	53.35 (16)
N1—C1—C7—C8	-70.1 (2)	C15-C10-C16-C13	-51.91 (16)
С6—С1—С7—С8	171.19 (18)	C12-C13-C16-C17	61.9 (2)
C2—C1—C7—C8	64.0 (2)	C14—C13—C16—C17	171.84 (18)
N1-C1-C7-C9	54.9 (3)	C12-C13-C16-C18	-173.08 (17)
С6—С1—С7—С9	-63.8 (2)	C14—C13—C16—C18	-63.1 (2)
C2—C1—C7—C9	-171.00 (18)	C12-C13-C16-C10	-54.87 (17)
N1-C1-C7-C4	173.26 (19)	C14—C13—C16—C10	55.09 (18)
C6—C1—C7—C4	54.55 (17)	C1—N1—C19—O1	1.2 (3)
C2—C1—C7—C4	-52.67 (17)	C1—N1—C19—N2	-179.62 (19)
C19—N2—C10—C11	-151.76 (18)	C10—N2—C19—O1	-23.8 (3)
C19—N2—C10—C15	-35.1 (3)	C10—N2—C19—N1	156.98 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···O3 ⁱ	0.82 (3)	2.34 (2)	3.090 (2)	153 (2)
N2—H2···O3 ⁱ	0.83 (2)	2.32 (2)	3.061 (2)	148 (2)
Symmetry codes: (i) $r = 1/2 = r + 1/2 = r$				

Symmetry codes: (i) x-1/2, -y+1/2, -z.

